Caltech Home > Home > News > Caltech to Receive $10 Million Grant...
Search open search form

Caltech to Receive $10 Million Grant from BP to Study Methane Conversion

Pasadena—A 10-year research grant totaling $10 million for the study of catalytically converting methane, the principal component of natural gas, to useful liquid fuels and chemicals, has been awarded to the California Institute of Technology by BP, one of the world's largest oil, gas, and petrochemical companies. An equal amount was awarded to the University of California, Berkeley.

Details about the grant and the implications this work could have on fuel usage internationally will be announced at a press conference at 4 p.m. Friday, September 22, at the Los Angeles Athletic Club, 431 West Seventh St., President's Room, fourth floor, Olive Street parking entrance.

Speakers will include Sir John Browne, BP's Chief Executive, David Baltimore, president of Caltech, and UC Berkeley Vice Chancellor Joseph Cerny.

Browne also will field questions about other energy-related issues including gas prices, crude oil supply, BP's take-over of ARCO, and cleaner burning fuels.

The grants have been agreed upon in principle by the universities, clearing the way for BP to establish a university research program at the two institutions, similar to one it previously announced at England's Cambridge University. The research will be directed by the respective faculty members and will involve undergraduate, graduate, and postdoctoral level students. Under the pending BP-funded proposal, each of the universities will work closely with BP and will receive $1 million per year for 10 years for the study of methane conversion.

The discovery of large reserves of natural gas in many parts of the world, some very remote, has stimulated efforts by BP to catalytically convert methane to useful end products, such as much cleaner fuels and chemicals that are more economical to transport and market.

"We believe the next breakthrough in the conversion of natural gas to liquids, which will help bring us the next generation of cleaner burning fuels, will come from catalysis combined with process engineering. These two universities have some of the world's finest scientific and engineering minds to help us accomplish this," said Browne.

"By undertaking this progressive collaboration with Caltech and UC Berkeley - which have taken vastly different approaches to solving this difficult methane conversion problem - we have formed a very innovative and substantial team."

The U.C. Berkeley group will be headed by Professor Alex Bell and will focus on heterogeneous catalytic approaches for producing liquid fuels and chemicals. Building on its strength in understanding catalyst structure-performance relationships, this group will seek major breakthroughs in catalyst and process design for both direct and indirect conversion of methane. By contrast, the Caltech team, led by Caltech's Beckman Institute Administrator Jay Labinger and Professor John Bercaw, will develop novel, homogeneous catalytic approaches, building on work their group has pursued for 10 years.

This new grant allows Caltech to take its research to the next level. The new, expanded research team will encompass work by some of the Institute's most respected researchers, Robert Grubbs, Mark Davis, Harry Gray, and Nate Lewis.

The funding will partially support as many as eight faculty members and 30 to 35 research staff, graduate students, and postdoctoral fellows at the two universities. As part of the grant, there will be frequently scheduled meetings and collaboration between the two groups.

Information in a number of supporting research areas - such as theoretical modeling, catalyst preparation, and process design - will also be shared, according to BP.

The two schools were selected based on their history of progressive research into catalytic conversion and on the reputation of their combined schools of chemistry and chemical engineering.

In accepting the grant, Caltech's president, David Baltimore, a Nobel prize-winning biologist, said, "The work performed will contribute to the education of a large number of young researchers, as it concurrently advances our ability to develop and exploit emerging technological and scientific concepts. It also enables us to broaden our base of funding for important scientific research that might otherwise go unexplored.

We applaud BP for its sincere efforts to bridge the gap between academia and the private sector in seeking ways to prevent the waste of natural resources and minimize environmental impact through research on converting natural gas to more economical and environmentally sensitive end uses," he added.

"From BP's perspective, partnering with leading educational and research institutions enables us to demonstrate responsible leadership while remaining on the cutting edge of scientific development, through funding projects that will not only benefit the company, but society as well, while offering opportunities that can result in a cleaner environment and a stronger economy. That is very much the way we expect to pursue aspects of fundamental scientific research," said Browne.

He also said that BP feels that because liquefaction and shipping of natural gas are expensive, the conversion of its principal component, methane, into useful end products is very attractive. The economics of methane conversion are strongly related to the capital investment required. To some extent, high capital costs are a consequence of the small scale that has been envisioned for most processes.

An overall aim is a major reduction in the energy required for conversion, potentially leading to substantially lower emissions of greenhouse gases.

London-based BP is a leader in solar power generation. It recently announced its "Clean Fuels 40 Cities' 2000 Program," dedicated to bringing cleaner fuels to cities worldwide.

###

For further information, contact:

BP: Cheryl Burnett (714) 670-5161 Berkeley: Jane Scheiber (510) 642-8782 Caltech: Jill Perry (626) 395-3226

Written by Jill Perry

Caltech Media Relations